37 research outputs found

    Interactive authoring of simulation-ready plants

    Full text link

    Example-based hair geometry synthesis

    Full text link

    Example-based wrinkle synthesis for clothing animation

    Get PDF
    This paper describes a method for animating the appearance of clothing, such as pants or a shirt, that fits closely to a figure's body. Compared to flowing cloth, such as loose dresses or capes, these types of garments involve nearly continuous collision contact and small wrinkles, that can be troublesome for traditional cloth simulation methods. Based on the observation that the wrinkles in closefitting clothing behave in a predominantly kinematic fashion, we have developed an example-based wrinkle synthesis technique. Our method drives wrinkle generation from the pose of the figure's kinematic skeleton. This approach allows high quality clothing wrinkles to be combined with a coarse cloth simulation that computes the global and dynamic aspects of the clothing motion. While the combined results do not exactly match a high-resolution reference simulation, they do capture many of the characteristic fine-scale features and wrinkles. Further, the combined system runs at interactive rates, making it suitable for applications where high-resolution offline simulations would not be a viable option. The wrinkle synthesis method uses a precomputed database built by simulating the high-resolution clothing as the articulated figure is moved over a range of poses. In principle, the space of poses is exponential in the total number of degrees of freedom; however clothing wrinkles are primarily affected by the nearest joints, allowing each joint to be processed independently. During synthesis, mesh interpolation is used to consider the influence of multiple joints, and combined with a coarse simulation to produce the final results at interactive rates

    Design and fabrication of flexible rod meshes

    No full text

    Robust hair capture using simulated examples

    No full text

    Investigation on the longshore transport mechanism along San Fernando Bay, La Union

    No full text
    With the Philippines being an archipelago, accelerated sea level rise can pose a threat to the coastlines of the country. Negative effects brought by the rise of sea levels can be flooding, erosion and salt water intrusion. The effects brought by the increase in strength and reoccurrence of storms would lead to coastal erosion. Different studies regarding sandy beaches have estimated that around 70% of the coastlines around the world recedes. One of the areas highly affected by coastal erosion is San Fernando Bay, La Union. Studies brought by Remotigue and Zamora (2004) and Bayani-Arias & Dorado (2012) have shown that a huge part of La Union is highly susceptible to erosion. With the group\u27s focus on longshore sediment transport, the paper aims to investigate the effects of different coastal parameters such as wind, wave, tide and current on the longshore rate of the study area chosen. Different parameters were then derived such as grain size, peak wave period, wave breaking height, wave breaking angle and transect orientation that would help in solving for the empirical formulas. The derived parameters were then used in the two most widely used formula, Kamphuis and CERC, and helped the group determine the equivalent longshore transport rate using the secondary data gathered from NAMRIA and PAG-ASA in the years of 1960, 1980, 2000 and 2016. It was then determined that the highest longshore transport rate value occurred during the year 1980. To supplement the findings of the researchers using the empirical formulas, a numerical based model known as DELFT3D was used to see the total longshore transport in the area. Carefully analyzing both empirical and numerical outputs, it was determined that the Kamphuis formula yielded closer results to DELFT3D since it was within the range of the values presented by DELFT3D. In conclusion, with the very high value obtained from the longshore transport rate in 1980 and the significant difference in the year 1960, it can be said that there is a spatial imbalance between these years due to the increase in the different parameters that governs the area such as wind, wave and tide which contributed to the rapid erosion rate area. As for the years 2000 and 2016, the longshore transport rate is slightly close to one another that if compared to the existing shoreline map, it reflects that there is no significant changes during the 16 year interval

    Multiple Light Source Estimation in a Single Image

    No full text
    Many high-level image processing tasks require an estimate of the positions, directions and relative intensities of the light sources that illuminated the depicted scene. In image-based rendering, augmented reality and computer vision, such tasks include matching image contents based on illumination, inserting rendered synthetic objects into a natural image, intrinsic images, shape from shading and image relighting. Yet, accurate and robust illumination estimation, particularly from a single image, is a highly ill-posed problem. In this paper, we present a new method to estimate the illumination in a single image as a combination of achromatic lights with their 3D directions and relative intensities. In contrast to previous methods, we base our azimuth angle estimation on curve fitting and recursive refinement of the number of light sources. Similarly, we present a novel surface normal approximation using an osculating arc for the estimation of zenith angles. By means of a new data set of ground-truth data and images, we demonstrate that our approach produces more robust and accurate results, and show its versatility through novel applications such as image compositing and analysis
    corecore